Volume 56, Issue 2
Congruences Involving Hecke-Rogers Type Series and Modular Forms

Guo-Shuai Mao & Yan Liu

J. Math. Study, 56 (2023), pp. 147-155.

Published online: 2023-06

Export citation
  • Abstract

In this paper, we prove two supercongruences of Hecke-Rogers type series and Modular forms conjectured by Chan, Cooper and Sica, such as, if
$$z_2=\sum_{m=-∞}^{\infty}\sum_{n=-\infty}^{\infty} q^{m^2+n^2},   x_2=\frac{\eta^{12}(2\tau)}{z_2^6}$$
and
$$z_2=\sum_{n=0}^{\infty}f_{2,n}x_2^n,$$ 
then
$$f_{2,pn}\equiv f_{2,n}  (mod \ p^2) \ \ when \ \  p\equiv 1(mod \  4),$$ where
$$\eta(\tau)=q^{\frac{1}{24}} \Pi_{n=1}^{\infty}(1-q^n),$$
and $q=exp(2πiτ)$ with $Im(τ)>0.$

  • AMS Subject Headings

11A07, 11B83, 33E50

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JMS-56-147, author = {Mao , Guo-Shuai and Liu , Yan}, title = {Congruences Involving Hecke-Rogers Type Series and Modular Forms}, journal = {Journal of Mathematical Study}, year = {2023}, volume = {56}, number = {2}, pages = {147--155}, abstract = {

In this paper, we prove two supercongruences of Hecke-Rogers type series and Modular forms conjectured by Chan, Cooper and Sica, such as, if
$$z_2=\sum_{m=-∞}^{\infty}\sum_{n=-\infty}^{\infty} q^{m^2+n^2},   x_2=\frac{\eta^{12}(2\tau)}{z_2^6}$$
and
$$z_2=\sum_{n=0}^{\infty}f_{2,n}x_2^n,$$ 
then
$$f_{2,pn}\equiv f_{2,n}  (mod \ p^2) \ \ when \ \  p\equiv 1(mod \  4),$$ where
$$\eta(\tau)=q^{\frac{1}{24}} \Pi_{n=1}^{\infty}(1-q^n),$$
and $q=exp(2πiτ)$ with $Im(τ)>0.$

}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v56n2.23.03}, url = {http://global-sci.org/intro/article_detail/jms/21825.html} }
TY - JOUR T1 - Congruences Involving Hecke-Rogers Type Series and Modular Forms AU - Mao , Guo-Shuai AU - Liu , Yan JO - Journal of Mathematical Study VL - 2 SP - 147 EP - 155 PY - 2023 DA - 2023/06 SN - 56 DO - http://doi.org/10.4208/jms.v56n2.23.03 UR - https://global-sci.org/intro/article_detail/jms/21825.html KW - Supercongruences, modular forms, Hecke-Rogers type series, $p$-adic Gamma function. AB -

In this paper, we prove two supercongruences of Hecke-Rogers type series and Modular forms conjectured by Chan, Cooper and Sica, such as, if
$$z_2=\sum_{m=-∞}^{\infty}\sum_{n=-\infty}^{\infty} q^{m^2+n^2},   x_2=\frac{\eta^{12}(2\tau)}{z_2^6}$$
and
$$z_2=\sum_{n=0}^{\infty}f_{2,n}x_2^n,$$ 
then
$$f_{2,pn}\equiv f_{2,n}  (mod \ p^2) \ \ when \ \  p\equiv 1(mod \  4),$$ where
$$\eta(\tau)=q^{\frac{1}{24}} \Pi_{n=1}^{\infty}(1-q^n),$$
and $q=exp(2πiτ)$ with $Im(τ)>0.$

Mao , Guo-Shuai and Liu , Yan. (2023). Congruences Involving Hecke-Rogers Type Series and Modular Forms. Journal of Mathematical Study. 56 (2). 147-155. doi:10.4208/jms.v56n2.23.03
Copy to clipboard
The citation has been copied to your clipboard