Cited by
- BibTex
- RIS
- TXT
Let $G$ be a finite group and $\mathfrak{c}(G)$ denote the number of cyclic subgroups of $G$. It is known that the minimal value of $\mathfrak{c}$ on the set of groups of order $n$, where $n$ is a positive integer, will occur at the cyclic group $Z_n$. In this paper, for non-cyclic nilpotent groups $G$ of order $n$, the lower bounds of $\mathfrak{c}(G)$ are established.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v56n1.23.03}, url = {http://global-sci.org/intro/article_detail/jms/21219.html} }Let $G$ be a finite group and $\mathfrak{c}(G)$ denote the number of cyclic subgroups of $G$. It is known that the minimal value of $\mathfrak{c}$ on the set of groups of order $n$, where $n$ is a positive integer, will occur at the cyclic group $Z_n$. In this paper, for non-cyclic nilpotent groups $G$ of order $n$, the lower bounds of $\mathfrak{c}(G)$ are established.