Cited by
- BibTex
- RIS
- TXT
In this paper, we mainly investigate the $\mathfrak{X}$-Gorenstein projective dimension of modules and the (left) $\mathfrak{X}$-Gorenstein global dimension of rings. Some properties of $\mathfrak{X}$-Gorenstein projective dimensions are obtained. Furthermore, we prove that the (left) $\mathfrak{X}$-Gorenstein global dimension of a ring $R$ is equal to the supremum of the set of $\mathfrak{X}$-Gorenstein projective dimensions of all cyclic (left) $R$-modules. This result extends the well-known Auslander's theorem on the global dimension and its Gorenstein homological version.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v55n4.22.04}, url = {http://global-sci.org/intro/article_detail/jms/21161.html} }In this paper, we mainly investigate the $\mathfrak{X}$-Gorenstein projective dimension of modules and the (left) $\mathfrak{X}$-Gorenstein global dimension of rings. Some properties of $\mathfrak{X}$-Gorenstein projective dimensions are obtained. Furthermore, we prove that the (left) $\mathfrak{X}$-Gorenstein global dimension of a ring $R$ is equal to the supremum of the set of $\mathfrak{X}$-Gorenstein projective dimensions of all cyclic (left) $R$-modules. This result extends the well-known Auslander's theorem on the global dimension and its Gorenstein homological version.