Weakly $I$-Semiregular Rings and $I$-Semiregular Rings
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JMS-54-451,
author = {Zhu , Zhanmin},
title = {Weakly $I$-Semiregular Rings and $I$-Semiregular Rings},
journal = {Journal of Mathematical Study},
year = {2021},
volume = {54},
number = {4},
pages = {451--459},
abstract = {
Let $I$ be an ideal of a ring $R$. We call $R$ weakly $I$-semiregular if $R$/$I$ is a von Neumann regular ring. This definition generalizes $I$-semiregular rings. We give a series of characterizations and properties of this class of rings. Moreover, we also give some properties of $I$-semiregular rings.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v54n4.21.09}, url = {http://global-sci.org/intro/article_detail/jms/19299.html} }
TY - JOUR
T1 - Weakly $I$-Semiregular Rings and $I$-Semiregular Rings
AU - Zhu , Zhanmin
JO - Journal of Mathematical Study
VL - 4
SP - 451
EP - 459
PY - 2021
DA - 2021/06
SN - 54
DO - http://doi.org/10.4208/jms.v54n4.21.09
UR - https://global-sci.org/intro/article_detail/jms/19299.html
KW - Weakly $I$-semiregular rings, $I$-semiregular rings, $n$-injective modules, $n$-flat modules, ($m$,$n$)-injective modules.
AB -
Let $I$ be an ideal of a ring $R$. We call $R$ weakly $I$-semiregular if $R$/$I$ is a von Neumann regular ring. This definition generalizes $I$-semiregular rings. We give a series of characterizations and properties of this class of rings. Moreover, we also give some properties of $I$-semiregular rings.
Zhu , Zhanmin. (2021). Weakly $I$-Semiregular Rings and $I$-Semiregular Rings.
Journal of Mathematical Study. 54 (4).
451-459.
doi:10.4208/jms.v54n4.21.09
Copy to clipboard