Cited by
- BibTex
- RIS
- TXT
We show for $k \geq 2$ that the locally Lipschitz viscosity solution to the $\sigma_k$-Loewner-Nirenberg problem on a given annulus $\{a < |x| < b\}$ is $C^{1,\frac{1}{k}}_{\rm loc}$ in each of $\{a < |x| \leq \sqrt{ab}\}$ and $\{\sqrt{ab} \leq |x| < b\}$ and has a jump in radial derivative across $|x| = \sqrt{ab}$. Furthermore, the solution is not $C^{1,\gamma}_{\rm loc}$ for any $\gamma > \frac{1}{k}$. Optimal regularity for solutions to the $\sigma_k$-Yamabe problem on annuli with finite constant boundary values is also established.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v54n2.21.01}, url = {http://global-sci.org/intro/article_detail/jms/18612.html} }We show for $k \geq 2$ that the locally Lipschitz viscosity solution to the $\sigma_k$-Loewner-Nirenberg problem on a given annulus $\{a < |x| < b\}$ is $C^{1,\frac{1}{k}}_{\rm loc}$ in each of $\{a < |x| \leq \sqrt{ab}\}$ and $\{\sqrt{ab} \leq |x| < b\}$ and has a jump in radial derivative across $|x| = \sqrt{ab}$. Furthermore, the solution is not $C^{1,\gamma}_{\rm loc}$ for any $\gamma > \frac{1}{k}$. Optimal regularity for solutions to the $\sigma_k$-Yamabe problem on annuli with finite constant boundary values is also established.