Cited by
- BibTex
- RIS
- TXT
Usual spectral methods are not effective for singularly perturbed problems and singular integral equations due to the boundary layer functions or weakly singular solutions. To overcome this difficulty, the enriched spectral-Galerkin methods (ESG) are applied to deal with a class of singularly perturbed problems and singular integral equations for which the form of leading singular solutions can be determined. In particular, for easily understanding the technique of ESG, the detail of the process are provided in solving singularly perturbed problems. Ample numerical examples verify the efficiency and accuracy of the enriched spectral Galerkin methods.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v53n2.20.02}, url = {http://global-sci.org/intro/article_detail/jms/16802.html} }Usual spectral methods are not effective for singularly perturbed problems and singular integral equations due to the boundary layer functions or weakly singular solutions. To overcome this difficulty, the enriched spectral-Galerkin methods (ESG) are applied to deal with a class of singularly perturbed problems and singular integral equations for which the form of leading singular solutions can be determined. In particular, for easily understanding the technique of ESG, the detail of the process are provided in solving singularly perturbed problems. Ample numerical examples verify the efficiency and accuracy of the enriched spectral Galerkin methods.