Cited by
- BibTex
- RIS
- TXT
We consider a system of parabolic PDEs with measure data modelling a problem of the time resolved diffuse optical tomography with a fluorescence term and Robin boundary conditions. We focus on the direct problem where the quantity of interest is the density of photons in the diffusion equations and which constitutes a major step to solve the inverse problem of identifiability and reconstruction of diffusion, absorption and concentration of the fluorescent markers. We study the problem under a variational form and its discretization with finite element method and we give some numerical simulation results for verification purpose as well as simulations with real data from a tomograph.
}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v52n3.19.07}, url = {http://global-sci.org/intro/article_detail/jms/13302.html} }We consider a system of parabolic PDEs with measure data modelling a problem of the time resolved diffuse optical tomography with a fluorescence term and Robin boundary conditions. We focus on the direct problem where the quantity of interest is the density of photons in the diffusion equations and which constitutes a major step to solve the inverse problem of identifiability and reconstruction of diffusion, absorption and concentration of the fluorescent markers. We study the problem under a variational form and its discretization with finite element method and we give some numerical simulation results for verification purpose as well as simulations with real data from a tomograph.