- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose an extended Levenberg-Marquardt (ELM) framework that generalizes the classic Levenberg-Marquardt (LM) method to solve the unconstrained minimization problem min $ρ(r(x))$, where $r$ : $\mathbb{R}^n$ → $\mathbb{R}^m$ and $ρ$ : $\mathbb{R}^m$ → $\mathbb{R}$. We also develop a few inexact variants which generalize ELM to the cases where the inner subproblem is not solved exactly and the Jacobian is simplified, or perturbed. Global convergence and local superlinear convergence are established under certain suitable conditions. Numerical results show that our methods are promising.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1702-m2016-0699}, url = {http://global-sci.org/intro/article_detail/jcm/10029.html} }In this paper, we propose an extended Levenberg-Marquardt (ELM) framework that generalizes the classic Levenberg-Marquardt (LM) method to solve the unconstrained minimization problem min $ρ(r(x))$, where $r$ : $\mathbb{R}^n$ → $\mathbb{R}^m$ and $ρ$ : $\mathbb{R}^m$ → $\mathbb{R}$. We also develop a few inexact variants which generalize ELM to the cases where the inner subproblem is not solved exactly and the Jacobian is simplified, or perturbed. Global convergence and local superlinear convergence are established under certain suitable conditions. Numerical results show that our methods are promising.