TY - JOUR T1 - Extended Levenberg-Marquardt Method for Composite Function Minimization AU - Huang , Jianchao AU - Wen , Zaiwen AU - Xiao , Xiantao JO - Journal of Computational Mathematics VL - 4 SP - 529 EP - 546 PY - 2017 DA - 2017/08 SN - 35 DO - http://doi.org/10.4208/jcm.1702-m2016-0699 UR - https://global-sci.org/intro/article_detail/jcm/10029.html KW - Unconstrained minimization, Composite function, Levenberg-Marquardt method. AB -
In this paper, we propose an extended Levenberg-Marquardt (ELM) framework that generalizes the classic Levenberg-Marquardt (LM) method to solve the unconstrained minimization problem min $ρ(r(x))$, where $r$ : $\mathbb{R}^n$ → $\mathbb{R}^m$ and $ρ$ : $\mathbb{R}^m$ → $\mathbb{R}$. We also develop a few inexact variants which generalize ELM to the cases where the inner subproblem is not solved exactly and the Jacobian is simplified, or perturbed. Global convergence and local superlinear convergence are established under certain suitable conditions. Numerical results show that our methods are promising.