- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 26 (2019), pp. 1444-1470.
Published online: 2019-08
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose highly efficient, unconditionally energy-stable numerical schemes to approximate the isotropic phase field model of solid-state dewetting problems by using the invariant energy quadratization (IEQ) method. The phase field model is governed by the isotropic Cahn-Hilliard equation with degenerate mobilities and dynamic contact line boundary conditions. By using the backward differential formula to discretize temporal derivatives, we construct linearly first- and second-order IEQ schemes for solving the model. It can be rigorously proved that these numerical schemes are unconditionally energy-stable and satisfy the total mass conservation during the evolution. By performing numerical simulations, we demonstrate that these IEQ-based schemes (including the first-order IEQ/BDF1, second-order IEQ/BDF2) are highly efficient, accurate and energy-stable. Furthermore, many interesting dewetting phenomena (such as the hole dynamics, pinch-off), are investigated by using the proposed IEQ schemes.
}, issn = {1991-7120}, doi = {https://doi.org/ 10.4208/cicp.2019.js60.07}, url = {http://global-sci.org/intro/article_detail/cicp/13271.html} }In this paper, we propose highly efficient, unconditionally energy-stable numerical schemes to approximate the isotropic phase field model of solid-state dewetting problems by using the invariant energy quadratization (IEQ) method. The phase field model is governed by the isotropic Cahn-Hilliard equation with degenerate mobilities and dynamic contact line boundary conditions. By using the backward differential formula to discretize temporal derivatives, we construct linearly first- and second-order IEQ schemes for solving the model. It can be rigorously proved that these numerical schemes are unconditionally energy-stable and satisfy the total mass conservation during the evolution. By performing numerical simulations, we demonstrate that these IEQ-based schemes (including the first-order IEQ/BDF1, second-order IEQ/BDF2) are highly efficient, accurate and energy-stable. Furthermore, many interesting dewetting phenomena (such as the hole dynamics, pinch-off), are investigated by using the proposed IEQ schemes.