@Article{CiCP-26-1444, author = {Huang , Qiong-AoJiang , Wei and Yang , Jerry Zhijian}, title = {An Efficient and Unconditionally Energy Stable Scheme for Simulating Solid-State Dewetting of Thin Films with Isotropic Surface Energy}, journal = {Communications in Computational Physics}, year = {2019}, volume = {26}, number = {5}, pages = {1444--1470}, abstract = {
In this paper, we propose highly efficient, unconditionally energy-stable numerical schemes to approximate the isotropic phase field model of solid-state dewetting problems by using the invariant energy quadratization (IEQ) method. The phase field model is governed by the isotropic Cahn-Hilliard equation with degenerate mobilities and dynamic contact line boundary conditions. By using the backward differential formula to discretize temporal derivatives, we construct linearly first- and second-order IEQ schemes for solving the model. It can be rigorously proved that these numerical schemes are unconditionally energy-stable and satisfy the total mass conservation during the evolution. By performing numerical simulations, we demonstrate that these IEQ-based schemes (including the first-order IEQ/BDF1, second-order IEQ/BDF2) are highly efficient, accurate and energy-stable. Furthermore, many interesting dewetting phenomena (such as the hole dynamics, pinch-off), are investigated by using the proposed IEQ schemes.
}, issn = {1991-7120}, doi = {https://doi.org/ 10.4208/cicp.2019.js60.07}, url = {http://global-sci.org/intro/article_detail/cicp/13271.html} }