Cited by
- BibTex
- RIS
- TXT
Let $L$ be the infinitesimal generator of an analytic semigroup on $L^2(\mathbf R^n)$ with Gaussian kernel bound, and let $L^{-\alpha/2}$ be the fractional integrals of $L$ for $0 < \alpha < n$. In this paper, we will obtain some boundedness properties of commutators $\big[b,L^{-\alpha/2}\big]$ on weighted Morrey spaces $L^{p,\kappa}(w)$ when the symbol $b$ belongs to $BMO(\mathbf R^n)$ or the homogeneous Lipschitz space.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2013.v29.n1.8}, url = {http://global-sci.org/intro/article_detail/ata/4516.html} }Let $L$ be the infinitesimal generator of an analytic semigroup on $L^2(\mathbf R^n)$ with Gaussian kernel bound, and let $L^{-\alpha/2}$ be the fractional integrals of $L$ for $0 < \alpha < n$. In this paper, we will obtain some boundedness properties of commutators $\big[b,L^{-\alpha/2}\big]$ on weighted Morrey spaces $L^{p,\kappa}(w)$ when the symbol $b$ belongs to $BMO(\mathbf R^n)$ or the homogeneous Lipschitz space.