TY - JOUR T1 - Some Estimates for Commutators of Fractional Integrals Associated to Operators with Gaussian Kernel Bounds on Weighted Morrey Spaces AU - H. Wang JO - Analysis in Theory and Applications VL - 1 SP - 72 EP - 85 PY - 2013 DA - 2013/03 SN - 29 DO - http://doi.org/10.4208/ata.2013.v29.n1.8 UR - https://global-sci.org/intro/article_detail/ata/4516.html KW - Gaussian upper bound, fractional integral, weighted Morrey space, commutator. AB -
Let $L$ be the infinitesimal generator of an analytic semigroup on $L^2(\mathbf R^n)$ with Gaussian kernel bound, and let $L^{-\alpha/2}$ be the fractional integrals of $L$ for $0 < \alpha < n$. In this paper, we will obtain some boundedness properties of commutators $\big[b,L^{-\alpha/2}\big]$ on weighted Morrey spaces $L^{p,\kappa}(w)$ when the symbol $b$ belongs to $BMO(\mathbf R^n)$ or the homogeneous Lipschitz space.