- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 2 (2009), pp. 301-325.
Published online: 2009-02
Cited by
- BibTex
- RIS
- TXT
The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms. In this work, we consider the extension of a recently proposed non-overlapping domain decomposition method for two dimensional time dependent convection diffusion equations with variable coefficients. By combining predictor-corrector technique, modified upwind differences with explicit-implicit coupling, the method under consideration provides intrinsic parallelism while maintaining good stability and accuracy. Moreover, for multi-dimensional problems, the method can be readily implemented on a multi-processor system and does not have the limitation on the choice of subdomains required by some other similar predictor-corrector or stabilized schemes. These properties of the method are demonstrated in this work through both rigorous mathematical analysis and numerical experiments.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2009.m8016}, url = {http://global-sci.org/intro/article_detail/nmtma/6061.html} }The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms. In this work, we consider the extension of a recently proposed non-overlapping domain decomposition method for two dimensional time dependent convection diffusion equations with variable coefficients. By combining predictor-corrector technique, modified upwind differences with explicit-implicit coupling, the method under consideration provides intrinsic parallelism while maintaining good stability and accuracy. Moreover, for multi-dimensional problems, the method can be readily implemented on a multi-processor system and does not have the limitation on the choice of subdomains required by some other similar predictor-corrector or stabilized schemes. These properties of the method are demonstrated in this work through both rigorous mathematical analysis and numerical experiments.