- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Cited by
- BibTex
- RIS
- TXT
The paper is concerned with strongly nonlinear singularly perturbed boundary value problems in one dimension. The problems are solved numerically by finite-difference schemes on special meshes which are dense in the boundary layers. The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed. For the central scheme, error estimates are derived in a discrete $L^1$ norm. They are of second order and decrease together with the perturbation parameter ε. The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically. Numerical results show ε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.
}, issn = {2079-7338}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/nmtma/6050.html} }The paper is concerned with strongly nonlinear singularly perturbed boundary value problems in one dimension. The problems are solved numerically by finite-difference schemes on special meshes which are dense in the boundary layers. The Bakhvalov mesh and a special piecewise equidistant mesh are analyzed. For the central scheme, error estimates are derived in a discrete $L^1$ norm. They are of second order and decrease together with the perturbation parameter ε. The fourth-order Numerov scheme and the Shishkin mesh are also tested numerically. Numerical results show ε-uniform pointwise convergence on the Bakhvalov and Shishkin meshes.