- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Cited by
- BibTex
- RIS
- TXT
In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence $O(N_x^{-2}\ln^2N_x+N_y^{-2}\ln^2N_y)$ in the $L^2$-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here $N_x$ and $N_y$ are the number of elements in the $x$- and $y$-directions, respectively. Numerical results are provided supporting our theoretical analysis.
}, issn = {2079-7338}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/nmtma/6045.html} }In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence $O(N_x^{-2}\ln^2N_x+N_y^{-2}\ln^2N_y)$ in the $L^2$-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here $N_x$ and $N_y$ are the number of elements in the $x$- and $y$-directions, respectively. Numerical results are provided supporting our theoretical analysis.