Numer. Math. Theor. Meth. Appl., 2 (2009), pp. 275-300.
Published online: 2009-02
Cited by
- BibTex
- RIS
- TXT
A high-order leap-frog based non-dissipative discontinuous Galerkin time-domain method for solving Maxwell's equations is introduced and analyzed. The proposed method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements, with a $N$th-order leap-frog time scheme. Moreover, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes. The method is proved to be stable under some CFL-like condition on the time step. The convergence of the semi-discrete approximation to Maxwell's equations is established rigorously and bounds on the global divergence error are provided. Numerical experiments with high-order elements show the potential of the method.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2009.m8018}, url = {http://global-sci.org/intro/article_detail/nmtma/6026.html} }A high-order leap-frog based non-dissipative discontinuous Galerkin time-domain method for solving Maxwell's equations is introduced and analyzed. The proposed method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements, with a $N$th-order leap-frog time scheme. Moreover, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes. The method is proved to be stable under some CFL-like condition on the time step. The convergence of the semi-discrete approximation to Maxwell's equations is established rigorously and bounds on the global divergence error are provided. Numerical experiments with high-order elements show the potential of the method.