- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 2 (2009), pp. 237-257.
Published online: 2009-02
Cited by
- BibTex
- RIS
- TXT
This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover, it provides the basis for a proof of the convergence of popular time integration schemes as the Newmark method. We study a frictionless dynamical contact problem between both linearly elastic and viscoelastic bodies which is formulated via the Signorini contact conditions. For viscoelastic materials fulfilling the Kelvin-Voigt constitutive law, we find a characterization of the class of problems which satisfy a perturbation result in a non-trivial mix of norms in function space. This characterization is given in the form of a stability condition on the contact stresses at the contact boundaries. Furthermore, we present perturbation results for two well-established approximations of the classical Signorini condition: The Signorini condition formulated in velocities and the model of normal compliance, both satisfying even a sharper version of our stability condition.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2009.m9003}, url = {http://global-sci.org/intro/article_detail/nmtma/6024.html} }This paper is intended to be a first step towards the continuous dependence of dynamical contact problems on the initial data as well as the uniqueness of a solution. Moreover, it provides the basis for a proof of the convergence of popular time integration schemes as the Newmark method. We study a frictionless dynamical contact problem between both linearly elastic and viscoelastic bodies which is formulated via the Signorini contact conditions. For viscoelastic materials fulfilling the Kelvin-Voigt constitutive law, we find a characterization of the class of problems which satisfy a perturbation result in a non-trivial mix of norms in function space. This characterization is given in the form of a stability condition on the contact stresses at the contact boundaries. Furthermore, we present perturbation results for two well-established approximations of the classical Signorini condition: The Signorini condition formulated in velocities and the model of normal compliance, both satisfying even a sharper version of our stability condition.