Cited by
- BibTex
- RIS
- TXT
Several cubature formulas on the cubic domains are derived using the discrete Fourier analysis associated with lattice tiling, as developed in [10]. The main results consist of a new derivation of the Gaussian type cubature for the product Chebyshev weight functions and associated interpolation polynomials on $[-1,1]^2$, as well as new results on $[-1,1]^3$. In particular, compact formulas for the fundamental interpolation polynomials are derived, based on $n^3/4 +O(n^2)$ nodes of a cubature formula on $[-1,1]^3$.
}, issn = {2079-7338}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/nmtma/6019.html} }Several cubature formulas on the cubic domains are derived using the discrete Fourier analysis associated with lattice tiling, as developed in [10]. The main results consist of a new derivation of the Gaussian type cubature for the product Chebyshev weight functions and associated interpolation polynomials on $[-1,1]^2$, as well as new results on $[-1,1]^3$. In particular, compact formulas for the fundamental interpolation polynomials are derived, based on $n^3/4 +O(n^2)$ nodes of a cubature formula on $[-1,1]^3$.