- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Cited by
- BibTex
- RIS
- TXT
Several cubature formulas on the cubic domains are derived using the discrete Fourier analysis associated with lattice tiling, as developed in [10]. The main results consist of a new derivation of the Gaussian type cubature for the product Chebyshev weight functions and associated interpolation polynomials on $[-1,1]^2$, as well as new results on $[-1,1]^3$. In particular, compact formulas for the fundamental interpolation polynomials are derived, based on $n^3/4 +O(n^2)$ nodes of a cubature formula on $[-1,1]^3$.
}, issn = {2079-7338}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/nmtma/6019.html} }Several cubature formulas on the cubic domains are derived using the discrete Fourier analysis associated with lattice tiling, as developed in [10]. The main results consist of a new derivation of the Gaussian type cubature for the product Chebyshev weight functions and associated interpolation polynomials on $[-1,1]^2$, as well as new results on $[-1,1]^3$. In particular, compact formulas for the fundamental interpolation polynomials are derived, based on $n^3/4 +O(n^2)$ nodes of a cubature formula on $[-1,1]^3$.