- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 3 (2010), pp. 1-22.
Published online: 2010-03
Cited by
- BibTex
- RIS
- TXT
Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper, we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function. It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter. Numerical experiments illustrate in practice the result of convergence proved theoretically.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2009.m8015}, url = {http://global-sci.org/intro/article_detail/nmtma/5986.html} }Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper, we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function. It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter. Numerical experiments illustrate in practice the result of convergence proved theoretically.