- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 4 (2011), pp. 576-597.
Published online: 2011-04
Cited by
- BibTex
- RIS
- TXT
The immersed interface method is modified to compute Schrödinger equation with discontinuous potential. By building the jump conditions of the solution into the finite difference approximation near the interface, this method can give at least second order convergence rate for the numerical solution on uniform cartesian grids. The accuracy of this algorithm is tested via several numerical examples.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2011.m1036}, url = {http://global-sci.org/intro/article_detail/nmtma/5984.html} }The immersed interface method is modified to compute Schrödinger equation with discontinuous potential. By building the jump conditions of the solution into the finite difference approximation near the interface, this method can give at least second order convergence rate for the numerical solution on uniform cartesian grids. The accuracy of this algorithm is tested via several numerical examples.