- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 4 (2011), pp. 505-524.
Published online: 2011-04
Cited by
- BibTex
- RIS
- TXT
In this paper we study a class of multilevel high order time discretization procedures for the finite difference weighted essential non-oscillatory (WENO) schemes to solve the one-dimensional and two-dimensional shallow water equations with source terms. Multilevel time discretization methods can make full use of computed information by WENO spatial discretization and save CPU cost by holding the former computational values. Extensive simulations are performed, which indicate that, the finite difference WENO schemes with multilevel time discretization can achieve higher accuracy, and are more cost effective than WENO scheme with Runge-Kutta time discretization, while still maintaining nonoscillatory properties.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2011.m1027}, url = {http://global-sci.org/intro/article_detail/nmtma/5981.html} }In this paper we study a class of multilevel high order time discretization procedures for the finite difference weighted essential non-oscillatory (WENO) schemes to solve the one-dimensional and two-dimensional shallow water equations with source terms. Multilevel time discretization methods can make full use of computed information by WENO spatial discretization and save CPU cost by holding the former computational values. Extensive simulations are performed, which indicate that, the finite difference WENO schemes with multilevel time discretization can achieve higher accuracy, and are more cost effective than WENO scheme with Runge-Kutta time discretization, while still maintaining nonoscillatory properties.