- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 4 (2011), pp. 489-504.
Published online: 2011-04
Cited by
- BibTex
- RIS
- TXT
In this paper, the finite element approximation of a class of semilinear parabolic optimal control problems with pointwise control constraint is studied. We discretize the state and co-state variables by piecewise linear continuous functions, and the control variable is approximated by piecewise constant functions or piecewise linear discontinuous functions. Some $\textit{a priori}$ error estimates are derived for both the control and state approximations. The convergence orders are also obtained.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2011.m1020}, url = {http://global-sci.org/intro/article_detail/nmtma/5980.html} }In this paper, the finite element approximation of a class of semilinear parabolic optimal control problems with pointwise control constraint is studied. We discretize the state and co-state variables by piecewise linear continuous functions, and the control variable is approximated by piecewise constant functions or piecewise linear discontinuous functions. Some $\textit{a priori}$ error estimates are derived for both the control and state approximations. The convergence orders are also obtained.