- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 4 (2011), pp. 478-488.
Published online: 2011-04
Cited by
- BibTex
- RIS
- TXT
In this paper we consider polynomials orthogonal with respect to the linear functional $\mathcal{L}:\mathcal{P}\to \mathbb{C}$, defined on the space of all algebraic polynomials $\mathcal{P}$ by$$\mathcal{L}[p] =\int_{-1}^1 p(x) (1-x)^{\alpha-1/2} (1+x)^{\beta-1/2}\exp(i\zeta x)dx,$$ where $\alpha,\beta >-1/2$ are real numbers such that $\ell=|\beta-\alpha|$ is a positive integer, and $\zeta\in\mathbb{R}\backslash\{0\}$. We prove the existence of such orthogonal polynomials for some pairs of $\alpha$ and $\zeta$ and for all nonnegative integers $\ell$. For such orthogonal polynomials we derive three-term recurrence relations and also some differential-difference relations. For such orthogonal polynomials the corresponding quadrature rules of Gaussian type are considered. Also, some numerical examples are included.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2011.m1039}, url = {http://global-sci.org/intro/article_detail/nmtma/5979.html} }In this paper we consider polynomials orthogonal with respect to the linear functional $\mathcal{L}:\mathcal{P}\to \mathbb{C}$, defined on the space of all algebraic polynomials $\mathcal{P}$ by$$\mathcal{L}[p] =\int_{-1}^1 p(x) (1-x)^{\alpha-1/2} (1+x)^{\beta-1/2}\exp(i\zeta x)dx,$$ where $\alpha,\beta >-1/2$ are real numbers such that $\ell=|\beta-\alpha|$ is a positive integer, and $\zeta\in\mathbb{R}\backslash\{0\}$. We prove the existence of such orthogonal polynomials for some pairs of $\alpha$ and $\zeta$ and for all nonnegative integers $\ell$. For such orthogonal polynomials we derive three-term recurrence relations and also some differential-difference relations. For such orthogonal polynomials the corresponding quadrature rules of Gaussian type are considered. Also, some numerical examples are included.