- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 4 (2011), pp. 419-438.
Published online: 2011-04
Cited by
- BibTex
- RIS
- TXT
A class of numerical methods is developed for second order Volterra integro-differential equations by using a Legendre spectral approach. We provide a rigorous error analysis for the proposed methods, which shows that the numerical errors decay exponentially in the $L^\infty$-norm and $L^2$-norm. Numerical examples illustrate the convergence and effectiveness of the numerical methods.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2011.m1028}, url = {http://global-sci.org/intro/article_detail/nmtma/5976.html} }A class of numerical methods is developed for second order Volterra integro-differential equations by using a Legendre spectral approach. We provide a rigorous error analysis for the proposed methods, which shows that the numerical errors decay exponentially in the $L^\infty$-norm and $L^2$-norm. Numerical examples illustrate the convergence and effectiveness of the numerical methods.