- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 4 (2011), pp. 237-254.
Published online: 2011-04
Cited by
- BibTex
- RIS
- TXT
In this paper, we present an efficient time-splitting Fourier spectral method for the quintic complex Swift-Hohenberg equation. Using the Strang time-splitting technique, we split the equation into linear part and nonlinear part. The linear part is solved with Fourier Pseudospectral method; the nonlinear part is solved analytically. We show that the method is easy to be applied and second-order in time and spectrally accurate in space. We apply the method to investigate soliton propagation, soliton interaction, and generation of stable moving pulses in one dimension and stable vortex solitons in two dimensions.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2011.42s.7}, url = {http://global-sci.org/intro/article_detail/nmtma/5967.html} }In this paper, we present an efficient time-splitting Fourier spectral method for the quintic complex Swift-Hohenberg equation. Using the Strang time-splitting technique, we split the equation into linear part and nonlinear part. The linear part is solved with Fourier Pseudospectral method; the nonlinear part is solved analytically. We show that the method is easy to be applied and second-order in time and spectrally accurate in space. We apply the method to investigate soliton propagation, soliton interaction, and generation of stable moving pulses in one dimension and stable vortex solitons in two dimensions.