- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 4 (2011), pp. 142-157.
Published online: 2011-04
Cited by
- BibTex
- RIS
- TXT
The three-dimensional spherical polytropic Lane-Emden problem is $y_{rr}+(2/r) y_{r} + y^{m}=0, y(0)=1, y_{r}(0)=0$ where $m \in [0, 5]$ is a constant parameter. The domain is $r \in [0, \xi]$ where $\xi$ is the first root of $y(r)$. We recast this as a nonlinear eigenproblem, with three boundary conditions and $\xi$ as the eigenvalue allowing imposition of the extra boundary condition, by making the change of coordinate $x \equiv r/\xi$: $y_{xx}+(2/x) y_{x}+ \xi^{2} y^{m}=0, y(0)=1, y_{x}(0)=0,$ $y(1)=0$. We find that a Newton-Kantorovich iteration always converges from an $m$-independent starting point $y^{(0)}(x)=\cos([\pi/2] x), \xi^{(0)}=3$. We apply a Chebyshev pseudospectral method to discretize $x$. The Lane-Emden equation has branch point singularities at the endpoint $x=1$ whenever $m$ is not an integer; we show that the Chebyshev coefficients are $a_{n} \sim constant/n^{2m+5}$ as $n \rightarrow \infty$. However, a Chebyshev truncation of $N=100$ always gives at least ten decimal places of accuracy — much more accuracy when $m$ is an integer. The numerical algorithm is so simple that the complete code (in Maple) is given as a one page table.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2011.42s.2}, url = {http://global-sci.org/intro/article_detail/nmtma/5962.html} }The three-dimensional spherical polytropic Lane-Emden problem is $y_{rr}+(2/r) y_{r} + y^{m}=0, y(0)=1, y_{r}(0)=0$ where $m \in [0, 5]$ is a constant parameter. The domain is $r \in [0, \xi]$ where $\xi$ is the first root of $y(r)$. We recast this as a nonlinear eigenproblem, with three boundary conditions and $\xi$ as the eigenvalue allowing imposition of the extra boundary condition, by making the change of coordinate $x \equiv r/\xi$: $y_{xx}+(2/x) y_{x}+ \xi^{2} y^{m}=0, y(0)=1, y_{x}(0)=0,$ $y(1)=0$. We find that a Newton-Kantorovich iteration always converges from an $m$-independent starting point $y^{(0)}(x)=\cos([\pi/2] x), \xi^{(0)}=3$. We apply a Chebyshev pseudospectral method to discretize $x$. The Lane-Emden equation has branch point singularities at the endpoint $x=1$ whenever $m$ is not an integer; we show that the Chebyshev coefficients are $a_{n} \sim constant/n^{2m+5}$ as $n \rightarrow \infty$. However, a Chebyshev truncation of $N=100$ always gives at least ten decimal places of accuracy — much more accuracy when $m$ is an integer. The numerical algorithm is so simple that the complete code (in Maple) is given as a one page table.