- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 5 (2012), pp. 447-492.
Published online: 2012-05
Cited by
- BibTex
- RIS
- TXT
With the aid of index functions, we re-derive the ML($n$)BiCGStab algorithm in [Yeung and Chan, SIAM J. Sci. Comput., 21 (1999), pp. 1263-1290] systematically. There are $n$ ways to define the ML($n$)BiCGStab residual vector. Each definition leads to a different ML($n$)BiCGStab algorithm. We demonstrate this by presenting a second algorithm which requires less storage. In theory, this second algorithm serves as a bridge that connects the Lanczos-based BiCGStab and the Arnoldi-based FOM while ML($n$)BiCG is a bridge connecting BiCG and FOM. We also analyze the breakdown situation from the probabilistic point of view and summarize some useful properties of ML($n$)BiCGStab. Implementation issues are also addressed.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2012.m1035}, url = {http://global-sci.org/intro/article_detail/nmtma/5946.html} }With the aid of index functions, we re-derive the ML($n$)BiCGStab algorithm in [Yeung and Chan, SIAM J. Sci. Comput., 21 (1999), pp. 1263-1290] systematically. There are $n$ ways to define the ML($n$)BiCGStab residual vector. Each definition leads to a different ML($n$)BiCGStab algorithm. We demonstrate this by presenting a second algorithm which requires less storage. In theory, this second algorithm serves as a bridge that connects the Lanczos-based BiCGStab and the Arnoldi-based FOM while ML($n$)BiCG is a bridge connecting BiCG and FOM. We also analyze the breakdown situation from the probabilistic point of view and summarize some useful properties of ML($n$)BiCGStab. Implementation issues are also addressed.