- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 5 (2012), pp. 278-296.
Published online: 2012-05
Cited by
- BibTex
- RIS
- TXT
As is known, the numerical stiffness arising from the small mean free path is one of the main difficulties in the kinetic equations. In this paper, we derive both the split and the unsplit schemes for the linear semiconductor Boltzmann equation with a diffusive scaling. In the two schemes, the anisotropic collision operator is realized by the "BGK"-penalty method, which is proposed by Filbet and Jin [F. Filbet and S. Jin, J. Comp. Phys. 229(20), 7625-7648, 2010] for the kinetic equations and the related problems having stiff sources. According to the numerical results, both of the schemes are shown to be uniformly convergent and asymptotic-preserving. Besides, numerical evidences suggest that the unsplit scheme has a better numerical stability than the split scheme.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2012.m1045}, url = {http://global-sci.org/intro/article_detail/nmtma/5939.html} }As is known, the numerical stiffness arising from the small mean free path is one of the main difficulties in the kinetic equations. In this paper, we derive both the split and the unsplit schemes for the linear semiconductor Boltzmann equation with a diffusive scaling. In the two schemes, the anisotropic collision operator is realized by the "BGK"-penalty method, which is proposed by Filbet and Jin [F. Filbet and S. Jin, J. Comp. Phys. 229(20), 7625-7648, 2010] for the kinetic equations and the related problems having stiff sources. According to the numerical results, both of the schemes are shown to be uniformly convergent and asymptotic-preserving. Besides, numerical evidences suggest that the unsplit scheme has a better numerical stability than the split scheme.