- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 6 (2013), pp. 116-137.
Published online: 2013-06
Cited by
- BibTex
- RIS
- TXT
This article describes the implementation of a simple wavelet-based optical-flow motion estimator dedicated to continuous motions such as fluid flows. The wavelet representation of the unknown velocity field is considered. This scale-space representation, associated to a simple gradient-based optimization algorithm, sets up a well-defined multiresolution framework for the optical flow estimation. Moreover, a very simple closure mechanism, approaching locally the solution by high-order polynomials is provided by truncating the wavelet basis at fine scales. Accuracy and efficiency of the proposed method are evaluated on image sequences of turbulent fluid flows.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2013.mssvm07}, url = {http://global-sci.org/intro/article_detail/nmtma/5897.html} }This article describes the implementation of a simple wavelet-based optical-flow motion estimator dedicated to continuous motions such as fluid flows. The wavelet representation of the unknown velocity field is considered. This scale-space representation, associated to a simple gradient-based optimization algorithm, sets up a well-defined multiresolution framework for the optical flow estimation. Moreover, a very simple closure mechanism, approaching locally the solution by high-order polynomials is provided by truncating the wavelet basis at fine scales. Accuracy and efficiency of the proposed method are evaluated on image sequences of turbulent fluid flows.