Numer. Math. Theor. Meth. Appl., 6 (2013), pp. 95-115.
Published online: 2013-06
Cited by
- BibTex
- RIS
- TXT
The paper is devoted to an approach for image inpainting developed on the basis of neurogeometry of vision and sub-Riemannian geometry. Inpainting is realized by completing damaged isophotes (level lines of brightness) by optimal curves for the left-invariant sub-Riemannian problem on the group of rototranslations (motions) of a plane SE(2). The approach is considered as anthropomorphic inpainting since these curves satisfy the variational principle discovered by neurogeometry of vision. A parallel algorithm and software to restore monochrome binary or halftone images represented as series of isophotes were developed. The approach and the algorithm for computation of completing arcs are presented in detail.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2013.mssvm05}, url = {http://global-sci.org/intro/article_detail/nmtma/5896.html} }The paper is devoted to an approach for image inpainting developed on the basis of neurogeometry of vision and sub-Riemannian geometry. Inpainting is realized by completing damaged isophotes (level lines of brightness) by optimal curves for the left-invariant sub-Riemannian problem on the group of rototranslations (motions) of a plane SE(2). The approach is considered as anthropomorphic inpainting since these curves satisfy the variational principle discovered by neurogeometry of vision. A parallel algorithm and software to restore monochrome binary or halftone images represented as series of isophotes were developed. The approach and the algorithm for computation of completing arcs are presented in detail.