- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 6 (2013), pp. 47-71.
Published online: 2013-06
Cited by
- BibTex
- RIS
- TXT
In this paper, a fast algorithm for Euler's elastica functional is proposed, in which the Euler's elastica functional is reformulated as a constrained minimization problem. Combining the augmented Lagrangian method and operator splitting techniques, the resulting saddle-point problem is solved by a serial of subproblems. To tackle the nonlinear constraints arising in the model, a novel fixed-point-based approach is proposed so that all the subproblems either is a linear problem or has a closed-form solution. We show the good performance of our approach in terms of speed and reliability using numerous numerical examples on synthetic, real-world and medical images for image denoising, image inpainting and image zooming problems.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2013.mssvm03}, url = {http://global-sci.org/intro/article_detail/nmtma/5894.html} }In this paper, a fast algorithm for Euler's elastica functional is proposed, in which the Euler's elastica functional is reformulated as a constrained minimization problem. Combining the augmented Lagrangian method and operator splitting techniques, the resulting saddle-point problem is solved by a serial of subproblems. To tackle the nonlinear constraints arising in the model, a novel fixed-point-based approach is proposed so that all the subproblems either is a linear problem or has a closed-form solution. We show the good performance of our approach in terms of speed and reliability using numerous numerical examples on synthetic, real-world and medical images for image denoising, image inpainting and image zooming problems.