- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 7 (2014), pp. 537-554.
Published online: 2014-07
Cited by
- BibTex
- RIS
- TXT
We consider in this paper numerical approximation of the linear Fluid-Structure Interaction (FSI). We construct a new class of pressure-correction schemes for the linear FSI problem with a fixed interface, and prove rigorously that they are unconditionally stable. These schemes are computationally very efficient, as they lead to, at each time step, a coupled linear elliptic system for the velocity and displacement in the whole region and a discrete Poisson equation in the fluid region.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2014.1307si}, url = {http://global-sci.org/intro/article_detail/nmtma/5889.html} }We consider in this paper numerical approximation of the linear Fluid-Structure Interaction (FSI). We construct a new class of pressure-correction schemes for the linear FSI problem with a fixed interface, and prove rigorously that they are unconditionally stable. These schemes are computationally very efficient, as they lead to, at each time step, a coupled linear elliptic system for the velocity and displacement in the whole region and a discrete Poisson equation in the fluid region.