- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 7 (2014), pp. 317-333.
Published online: 2014-07
Cited by
- BibTex
- RIS
- TXT
For the approximation in $L_p$-norm, we determine the weakly asymptotic orders for the simultaneous approximation errors of Sobolev classes by piecewise cubic Hermite interpolation with equidistant knots. For $p = 1$, $∞$, we obtain its values. By these results we know that for the Sobolev classes, the approximation errors by piecewise cubic Hermite interpolation are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths. At the same time, the approximation errors of derivatives are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2014.1232nm}, url = {http://global-sci.org/intro/article_detail/nmtma/5877.html} }For the approximation in $L_p$-norm, we determine the weakly asymptotic orders for the simultaneous approximation errors of Sobolev classes by piecewise cubic Hermite interpolation with equidistant knots. For $p = 1$, $∞$, we obtain its values. By these results we know that for the Sobolev classes, the approximation errors by piecewise cubic Hermite interpolation are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths. At the same time, the approximation errors of derivatives are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths.