- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 7 (2014), pp. 214-233.
Published online: 2014-07
Cited by
- BibTex
- RIS
- TXT
We study the enhancement of accuracy, by means of the convolution post-processing technique, for discontinuous Galerkin(DG) approximations to hyperbolic problems. Previous investigations have focused on the superconvergence obtained by this technique for elliptic, time-dependent hyperbolic and convection-diffusion problems. In this paper, we demonstrate that it is possible to extend this post-processing technique to the hyperbolic problems written as the Friedrichs' systems by using an upwind-like DG method. We prove that the $L_2$-error of the DG solution is of order $k+1/2$, and further the post-processed DG solution is of order $2k+1$ if $Q_k$-polynomials are used. The key element of our analysis is to derive the $(2k+1)$-order negative norm error estimate. Numerical experiments are provided to illustrate the theoretical analysis.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2014.1216nm}, url = {http://global-sci.org/intro/article_detail/nmtma/5872.html} }We study the enhancement of accuracy, by means of the convolution post-processing technique, for discontinuous Galerkin(DG) approximations to hyperbolic problems. Previous investigations have focused on the superconvergence obtained by this technique for elliptic, time-dependent hyperbolic and convection-diffusion problems. In this paper, we demonstrate that it is possible to extend this post-processing technique to the hyperbolic problems written as the Friedrichs' systems by using an upwind-like DG method. We prove that the $L_2$-error of the DG solution is of order $k+1/2$, and further the post-processed DG solution is of order $2k+1$ if $Q_k$-polynomials are used. The key element of our analysis is to derive the $(2k+1)$-order negative norm error estimate. Numerical experiments are provided to illustrate the theoretical analysis.