- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 18 (2025), pp. 175-198.
Published online: 2025-04
Cited by
- BibTex
- RIS
- TXT
This paper proposes a discussion of the direct discontinuous Galerkin (DDG) methods coupled with explicit-implicit-null time discretizations (EIN) for solving the nonlinear diffusion equation $u_t = (a(u)u_x)_x.$ The basic idea of the EIN method is to add and subtract two equal constant coefficient terms $a_1u_{xx}$ $(a_1 = a_0 ×{\rm max}_u a(u))$ on the right-hand side of the above equation, and then apply the explicit-implicit time-marching method to the equivalent equation. The EIN method does not require any nonlinear iterative solver while eliminating the severe time-step restrictions typically associated with explicit methods. We present the stability criterion of the EIN-DDG schemes for the simplified equation with periodic boundary conditions via the Fourier method, where the first order and second order EIN-DDG schemes are unconditionally stable when $a_0 ≥ 0.5$ and the third order EIN-DDG scheme is unconditionally stable under the condition $a_0 ≥ 0.54.$ Numerical experiments show the stability and optimal orders of accuracy of our proposed schemes with a relaxed time-step restriction and the appropriate coefficient $a_0$ for both linear and nonlinear equations in one-dimensional and two-dimensional settings. Furthermore, we also show that the computational efficiency of our EIN-DDG schemes and explicit Runge-Kutta DDG (EX-RK-DDG) schemes for steady-state equations with small viscosity coefficients to illustrate the effectiveness of the present methods.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2024-0076}, url = {http://global-sci.org/intro/article_detail/nmtma/23946.html} }This paper proposes a discussion of the direct discontinuous Galerkin (DDG) methods coupled with explicit-implicit-null time discretizations (EIN) for solving the nonlinear diffusion equation $u_t = (a(u)u_x)_x.$ The basic idea of the EIN method is to add and subtract two equal constant coefficient terms $a_1u_{xx}$ $(a_1 = a_0 ×{\rm max}_u a(u))$ on the right-hand side of the above equation, and then apply the explicit-implicit time-marching method to the equivalent equation. The EIN method does not require any nonlinear iterative solver while eliminating the severe time-step restrictions typically associated with explicit methods. We present the stability criterion of the EIN-DDG schemes for the simplified equation with periodic boundary conditions via the Fourier method, where the first order and second order EIN-DDG schemes are unconditionally stable when $a_0 ≥ 0.5$ and the third order EIN-DDG scheme is unconditionally stable under the condition $a_0 ≥ 0.54.$ Numerical experiments show the stability and optimal orders of accuracy of our proposed schemes with a relaxed time-step restriction and the appropriate coefficient $a_0$ for both linear and nonlinear equations in one-dimensional and two-dimensional settings. Furthermore, we also show that the computational efficiency of our EIN-DDG schemes and explicit Runge-Kutta DDG (EX-RK-DDG) schemes for steady-state equations with small viscosity coefficients to illustrate the effectiveness of the present methods.