- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 17 (2024), pp. 1041-1073.
Published online: 2024-12
Cited by
- BibTex
- RIS
- TXT
A third-order accurate implicit-explicit Runge-Kutta time marching numerical scheme is proposed and implemented for the Landau-Lifshitz-Gilbert equation, which models magnetization dynamics in ferromagnetic materials, with arbitrary damping parameters. This method has three remarkable advantages: (1) only a linear system with constant coefficients needs to be solved at each Runge-Kutta stage, which greatly reduces the time cost and improves the efficiency; (2) the optimal rate convergence analysis does not impose any restriction on the magnitude of damping parameter, which is consistent with the third-order accuracy in time for 1-D and 3-D numerical examples; (3) its unconditional stability with respect to the damping parameter has been verified by a detailed numerical study. In comparison with many existing methods, the proposed method indicates a better performance on accuracy and efficiency, and thus provides a better option for micromagnetics simulations.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2024-0036 }, url = {http://global-sci.org/intro/article_detail/nmtma/23651.html} }A third-order accurate implicit-explicit Runge-Kutta time marching numerical scheme is proposed and implemented for the Landau-Lifshitz-Gilbert equation, which models magnetization dynamics in ferromagnetic materials, with arbitrary damping parameters. This method has three remarkable advantages: (1) only a linear system with constant coefficients needs to be solved at each Runge-Kutta stage, which greatly reduces the time cost and improves the efficiency; (2) the optimal rate convergence analysis does not impose any restriction on the magnitude of damping parameter, which is consistent with the third-order accuracy in time for 1-D and 3-D numerical examples; (3) its unconditional stability with respect to the damping parameter has been verified by a detailed numerical study. In comparison with many existing methods, the proposed method indicates a better performance on accuracy and efficiency, and thus provides a better option for micromagnetics simulations.