arrow
Volume 17, Issue 2
Non-Local and Fully Connected Tensor Network Decomposition for Remote Sensing Image Denoising

Zhihui Tu, Shunda Chen, Jian Lu, Lin Li & Qingtang Jiang

Numer. Math. Theor. Meth. Appl., 17 (2024), pp. 379-403.

Published online: 2024-05

Export citation
  • Abstract

Remote sensing images (RSIs) encompass abundant spatial and spectral/temporal information, finding wide applications in various domains. However, during image acquisition and transmission, RSI often encounter noise interference, which adversely affects the accuracy of subsequent applications. To address this issue, this paper proposes a novel non-local fully connected tensor network (NLFCTN) decomposition algorithm for denoising RSI, aiming to fully exploit their global correlation and non-local self-similarity (NSS) characteristics. FCTN, as a recently developed tensor decomposition technique, exhibits remarkable capability in capturing global correlations and minimizing information loss. In addition, we introduce an efficient algorithm based on proximal alternating minimization (PAM) to efficiently solve the model and prove the convergence. The effectiveness of the proposed method is validated through denoising experiments on both simulated and real RSI data, employing objective evaluation metrics and subjective visual assessments. The results of the experiment show that the proposed method outperforms other RSI denoising techniques in terms of denoising performance.

  • AMS Subject Headings

65F22, 65F35, 94A08, 46N10

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{NMTMA-17-379, author = {Tu , ZhihuiChen , ShundaLu , JianLi , Lin and Jiang , Qingtang}, title = {Non-Local and Fully Connected Tensor Network Decomposition for Remote Sensing Image Denoising}, journal = {Numerical Mathematics: Theory, Methods and Applications}, year = {2024}, volume = {17}, number = {2}, pages = {379--403}, abstract = {

Remote sensing images (RSIs) encompass abundant spatial and spectral/temporal information, finding wide applications in various domains. However, during image acquisition and transmission, RSI often encounter noise interference, which adversely affects the accuracy of subsequent applications. To address this issue, this paper proposes a novel non-local fully connected tensor network (NLFCTN) decomposition algorithm for denoising RSI, aiming to fully exploit their global correlation and non-local self-similarity (NSS) characteristics. FCTN, as a recently developed tensor decomposition technique, exhibits remarkable capability in capturing global correlations and minimizing information loss. In addition, we introduce an efficient algorithm based on proximal alternating minimization (PAM) to efficiently solve the model and prove the convergence. The effectiveness of the proposed method is validated through denoising experiments on both simulated and real RSI data, employing objective evaluation metrics and subjective visual assessments. The results of the experiment show that the proposed method outperforms other RSI denoising techniques in terms of denoising performance.

}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2023-0135}, url = {http://global-sci.org/intro/article_detail/nmtma/23105.html} }
TY - JOUR T1 - Non-Local and Fully Connected Tensor Network Decomposition for Remote Sensing Image Denoising AU - Tu , Zhihui AU - Chen , Shunda AU - Lu , Jian AU - Li , Lin AU - Jiang , Qingtang JO - Numerical Mathematics: Theory, Methods and Applications VL - 2 SP - 379 EP - 403 PY - 2024 DA - 2024/05 SN - 17 DO - http://doi.org/10.4208/nmtma.OA-2023-0135 UR - https://global-sci.org/intro/article_detail/nmtma/23105.html KW - Remote sensing images, denoising, tensor decomposition, non-local self-similarity. AB -

Remote sensing images (RSIs) encompass abundant spatial and spectral/temporal information, finding wide applications in various domains. However, during image acquisition and transmission, RSI often encounter noise interference, which adversely affects the accuracy of subsequent applications. To address this issue, this paper proposes a novel non-local fully connected tensor network (NLFCTN) decomposition algorithm for denoising RSI, aiming to fully exploit their global correlation and non-local self-similarity (NSS) characteristics. FCTN, as a recently developed tensor decomposition technique, exhibits remarkable capability in capturing global correlations and minimizing information loss. In addition, we introduce an efficient algorithm based on proximal alternating minimization (PAM) to efficiently solve the model and prove the convergence. The effectiveness of the proposed method is validated through denoising experiments on both simulated and real RSI data, employing objective evaluation metrics and subjective visual assessments. The results of the experiment show that the proposed method outperforms other RSI denoising techniques in terms of denoising performance.

Tu , ZhihuiChen , ShundaLu , JianLi , Lin and Jiang , Qingtang. (2024). Non-Local and Fully Connected Tensor Network Decomposition for Remote Sensing Image Denoising. Numerical Mathematics: Theory, Methods and Applications. 17 (2). 379-403. doi:10.4208/nmtma.OA-2023-0135
Copy to clipboard
The citation has been copied to your clipboard