- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 17 (2024), pp. 351-378.
Published online: 2024-05
Cited by
- BibTex
- RIS
- TXT
In this paper, we primarily investigate the existence, dependence and optimal control results related to solutions for a system of hemivariational inequalities pertaining to a non-stationary Navier-Stokes equation coupled with an evolution equation of temperature field. The boundary conditions for both the velocity field and temperature field incorporate the generalized Clarke gradient. The existence and uniqueness of the weak solution are established by utilizing the Banach fixed point theorem in conjunction with certain results pertaining to hemivariational inequalities. The finite element method is used to discretize the system of hemivariational inequalities and error bounds are derived. Ultimately, a result confirming the existence of a solution to an optimal control problem for the system of hemivariational inequalities is elucidated.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2023-0124}, url = {http://global-sci.org/intro/article_detail/nmtma/23104.html} }In this paper, we primarily investigate the existence, dependence and optimal control results related to solutions for a system of hemivariational inequalities pertaining to a non-stationary Navier-Stokes equation coupled with an evolution equation of temperature field. The boundary conditions for both the velocity field and temperature field incorporate the generalized Clarke gradient. The existence and uniqueness of the weak solution are established by utilizing the Banach fixed point theorem in conjunction with certain results pertaining to hemivariational inequalities. The finite element method is used to discretize the system of hemivariational inequalities and error bounds are derived. Ultimately, a result confirming the existence of a solution to an optimal control problem for the system of hemivariational inequalities is elucidated.