- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 17 (2024), pp. 181-209.
Published online: 2024-02
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a method for solving semilinear elliptical equations using a ResNet with ${\rm ReLU}^2$ activations. Firstly, we present a comprehensive formulation based on the penalized variational form of the elliptical equations. We then apply the Deep Ritz Method, which works for a wide range of equations. We obtain an upper bound on the errors between the acquired solutions and the true solutions in terms of the depth $\mathcal{D},$ width $\mathcal{W}$ of the ${\rm ReLU}^2$ ResNet, and the number of training samples $n.$ Our simulation results demonstrate that our method can effectively overcome the curse of dimensionality and validate the theoretical results.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2023-0058 }, url = {http://global-sci.org/intro/article_detail/nmtma/22915.html} }In this paper, we propose a method for solving semilinear elliptical equations using a ResNet with ${\rm ReLU}^2$ activations. Firstly, we present a comprehensive formulation based on the penalized variational form of the elliptical equations. We then apply the Deep Ritz Method, which works for a wide range of equations. We obtain an upper bound on the errors between the acquired solutions and the true solutions in terms of the depth $\mathcal{D},$ width $\mathcal{W}$ of the ${\rm ReLU}^2$ ResNet, and the number of training samples $n.$ Our simulation results demonstrate that our method can effectively overcome the curse of dimensionality and validate the theoretical results.