- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 16 (2023), pp. 541-564.
Published online: 2023-04
Cited by
- BibTex
- RIS
- TXT
Boundary integral equations provide a powerful tool for the solution of scattering problems. However, often a singular kernel arises, in which case the standard quadratures will give rise to unavoidable deteriorations in numerical precision, thus special treatment is needed to handle the singular behavior. Especially, for inhomogeneous media, it is difficult if not impossible to find out an analytical expression for Green’s function. In this paper, an efficient fourth-order accurate Cartesian grid-based method is proposed for the two-dimensional Helmholtz scattering and transmission problems with inhomogeneous media. This method provides an alternative approach to indirect integral evaluation by solving equivalent interface problems on Cartesian grid with a modified fourth-order accurate compact finite difference scheme and a fast Fourier transform preconditioned conjugate gradient (FFT-PCG) solver. A remarkable point of this method is that there is no need to know analytical expressions for Green’s function. Numerical experiments are provided to demonstrate the advantage of the current approach, including its simplicity in implementation, its high accuracy and efficiency.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2022-0159}, url = {http://global-sci.org/intro/article_detail/nmtma/21588.html} }Boundary integral equations provide a powerful tool for the solution of scattering problems. However, often a singular kernel arises, in which case the standard quadratures will give rise to unavoidable deteriorations in numerical precision, thus special treatment is needed to handle the singular behavior. Especially, for inhomogeneous media, it is difficult if not impossible to find out an analytical expression for Green’s function. In this paper, an efficient fourth-order accurate Cartesian grid-based method is proposed for the two-dimensional Helmholtz scattering and transmission problems with inhomogeneous media. This method provides an alternative approach to indirect integral evaluation by solving equivalent interface problems on Cartesian grid with a modified fourth-order accurate compact finite difference scheme and a fast Fourier transform preconditioned conjugate gradient (FFT-PCG) solver. A remarkable point of this method is that there is no need to know analytical expressions for Green’s function. Numerical experiments are provided to demonstrate the advantage of the current approach, including its simplicity in implementation, its high accuracy and efficiency.