Numer. Math. Theor. Meth. Appl., 16 (2023), pp. 323-347.
Published online: 2023-04
Cited by
- BibTex
- RIS
- TXT
Weak Galerkin finite element method is introduced for solving wave equation with interface on weak Galerkin finite element space $(\mathcal{P}_k(K), \mathcal{P}_{k−1}(∂K), [\mathcal{P}_{k−1}(K)]^2).$ Optimal order a priori error estimates for both space-discrete scheme and implicit fully discrete scheme are derived in $L^∞(L^2)$ norm. This method uses totally discontinuous functions in approximation space and allows the usage of finite element partitions consisting of general polygonal meshes. Finite element algorithm presented here can contribute to a variety of hyperbolic problems where physical domain consists of heterogeneous media.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2021-0080}, url = {http://global-sci.org/intro/article_detail/nmtma/21579.html} }Weak Galerkin finite element method is introduced for solving wave equation with interface on weak Galerkin finite element space $(\mathcal{P}_k(K), \mathcal{P}_{k−1}(∂K), [\mathcal{P}_{k−1}(K)]^2).$ Optimal order a priori error estimates for both space-discrete scheme and implicit fully discrete scheme are derived in $L^∞(L^2)$ norm. This method uses totally discontinuous functions in approximation space and allows the usage of finite element partitions consisting of general polygonal meshes. Finite element algorithm presented here can contribute to a variety of hyperbolic problems where physical domain consists of heterogeneous media.