arrow
Volume 16, Issue 1
The Direct Method of Lines for Forward and Inverse Linear Elasticity Problems of Composite Materials in Star-Shaped Domains

Xiaopeng Zhu, Zhizhang Wu & Zhongyi Huang

Numer. Math. Theor. Meth. Appl., 16 (2023), pp. 242-276.

Published online: 2023-01

Export citation
  • Abstract

In this paper, we generalize the direct method of lines for linear elasticity problems of composite materials in star-shaped domains and consider its application to inverse elasticity problems. We assume that the boundary of the star-shaped domain can be described by an explicit $C^1$ parametric curve in the polar coordinate. We introduce the curvilinear coordinate, in which the irregular star-shaped domain is converted to a regular semi-infinite strip. The equations of linear elasticity are discretized with respect to the angular variable and we solve the resulting semi-discrete approximation analytically using a direct method. The eigenvalues of the semi-discrete approximation converge quickly to the true eigenvalues of the elliptic operator, which helps capture the singularities naturally. Moreover, an optimal error estimate of our method is given. For the inverse elasticity problems, we determine the Lamé coefficients from measurement data by minimizing a regularized energy functional. We apply the direct method of lines as the forward solver in order to cope with the irregularity of the domain and possible singularities in the forward solutions. Several numerical examples are presented to show the effectiveness and accuracy of our method for both forward and inverse elasticity problems of composite materials.

  • AMS Subject Headings

65N21, 65N40, 74A40, 74B05

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{NMTMA-16-242, author = {Zhu , XiaopengWu , Zhizhang and Huang , Zhongyi}, title = {The Direct Method of Lines for Forward and Inverse Linear Elasticity Problems of Composite Materials in Star-Shaped Domains}, journal = {Numerical Mathematics: Theory, Methods and Applications}, year = {2023}, volume = {16}, number = {1}, pages = {242--276}, abstract = {

In this paper, we generalize the direct method of lines for linear elasticity problems of composite materials in star-shaped domains and consider its application to inverse elasticity problems. We assume that the boundary of the star-shaped domain can be described by an explicit $C^1$ parametric curve in the polar coordinate. We introduce the curvilinear coordinate, in which the irregular star-shaped domain is converted to a regular semi-infinite strip. The equations of linear elasticity are discretized with respect to the angular variable and we solve the resulting semi-discrete approximation analytically using a direct method. The eigenvalues of the semi-discrete approximation converge quickly to the true eigenvalues of the elliptic operator, which helps capture the singularities naturally. Moreover, an optimal error estimate of our method is given. For the inverse elasticity problems, we determine the Lamé coefficients from measurement data by minimizing a regularized energy functional. We apply the direct method of lines as the forward solver in order to cope with the irregularity of the domain and possible singularities in the forward solutions. Several numerical examples are presented to show the effectiveness and accuracy of our method for both forward and inverse elasticity problems of composite materials.

}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2021-0184}, url = {http://global-sci.org/intro/article_detail/nmtma/21351.html} }
TY - JOUR T1 - The Direct Method of Lines for Forward and Inverse Linear Elasticity Problems of Composite Materials in Star-Shaped Domains AU - Zhu , Xiaopeng AU - Wu , Zhizhang AU - Huang , Zhongyi JO - Numerical Mathematics: Theory, Methods and Applications VL - 1 SP - 242 EP - 276 PY - 2023 DA - 2023/01 SN - 16 DO - http://doi.org/10.4208/nmtma.OA-2021-0184 UR - https://global-sci.org/intro/article_detail/nmtma/21351.html KW - Composite materials, linear elasticity problems, inverse elasticity problems, star-shaped domains, method of lines. AB -

In this paper, we generalize the direct method of lines for linear elasticity problems of composite materials in star-shaped domains and consider its application to inverse elasticity problems. We assume that the boundary of the star-shaped domain can be described by an explicit $C^1$ parametric curve in the polar coordinate. We introduce the curvilinear coordinate, in which the irregular star-shaped domain is converted to a regular semi-infinite strip. The equations of linear elasticity are discretized with respect to the angular variable and we solve the resulting semi-discrete approximation analytically using a direct method. The eigenvalues of the semi-discrete approximation converge quickly to the true eigenvalues of the elliptic operator, which helps capture the singularities naturally. Moreover, an optimal error estimate of our method is given. For the inverse elasticity problems, we determine the Lamé coefficients from measurement data by minimizing a regularized energy functional. We apply the direct method of lines as the forward solver in order to cope with the irregularity of the domain and possible singularities in the forward solutions. Several numerical examples are presented to show the effectiveness and accuracy of our method for both forward and inverse elasticity problems of composite materials.

Zhu , XiaopengWu , Zhizhang and Huang , Zhongyi. (2023). The Direct Method of Lines for Forward and Inverse Linear Elasticity Problems of Composite Materials in Star-Shaped Domains. Numerical Mathematics: Theory, Methods and Applications. 16 (1). 242-276. doi:10.4208/nmtma.OA-2021-0184
Copy to clipboard
The citation has been copied to your clipboard