- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 15 (2022), pp. 1147-1172.
Published online: 2022-10
Cited by
- BibTex
- RIS
- TXT
Based on a nonlocal Laplacian operator, a novel edge detection method of the grayscale image is proposed in this paper. This operator utilizes the information of neighbor pixels for a given pixel to obtain effective and delicate edge detection. The nonlocal edge detection method is used as an initialization for solving the Allen-Cahn equation to achieve two-phase segmentation of the grayscale image. Efficient exponential time differencing (ETD) solvers are employed in the time integration, and finite difference method is adopted in space discretization. The maximum bound principle and energy stability of the proposed numerical schemes are proved. The capability of our segmentation method has been verified in numerical experiments for different types of grayscale images.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2022-0008s}, url = {http://global-sci.org/intro/article_detail/nmtma/21097.html} }Based on a nonlocal Laplacian operator, a novel edge detection method of the grayscale image is proposed in this paper. This operator utilizes the information of neighbor pixels for a given pixel to obtain effective and delicate edge detection. The nonlocal edge detection method is used as an initialization for solving the Allen-Cahn equation to achieve two-phase segmentation of the grayscale image. Efficient exponential time differencing (ETD) solvers are employed in the time integration, and finite difference method is adopted in space discretization. The maximum bound principle and energy stability of the proposed numerical schemes are proved. The capability of our segmentation method has been verified in numerical experiments for different types of grayscale images.