- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 15 (2022), pp. 1041-1062.
Published online: 2022-10
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a hybrid spectral method for a type of nonlocal problems, nonlinear Volterra integral equations (VIEs) of the second kind. The main idea is to use the shifted generalized Log orthogonal functions (GLOFs) as the basis for the first interval and employ the classical shifted Legendre polynomials for other subintervals. This method is robust for VIEs with weakly singular kernel due to the GLOFs can efficiently approximate one-point singular functions as well as smooth functions. The well-posedness and the related error estimates will be provided. Abundant numerical experiments will verify the theoretical results and show the high-efficiency of the new hybrid spectral method.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2022-0006s }, url = {http://global-sci.org/intro/article_detail/nmtma/21089.html} }In this paper, we propose a hybrid spectral method for a type of nonlocal problems, nonlinear Volterra integral equations (VIEs) of the second kind. The main idea is to use the shifted generalized Log orthogonal functions (GLOFs) as the basis for the first interval and employ the classical shifted Legendre polynomials for other subintervals. This method is robust for VIEs with weakly singular kernel due to the GLOFs can efficiently approximate one-point singular functions as well as smooth functions. The well-posedness and the related error estimates will be provided. Abundant numerical experiments will verify the theoretical results and show the high-efficiency of the new hybrid spectral method.