- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 15 (2022), pp. 1009-1040.
Published online: 2022-10
Cited by
- BibTex
- RIS
- TXT
In this paper, we develop an efficient Hermite spectral-Galerkin method for nonlocal diffusion equations in unbounded domains. We show that the use of the Hermite basis can de-convolute the troublesome convolutional operations involved in the nonlocal Laplacian. As a result, the “stiffness” matrix can be fast computed and assembled via the four-point stable recursive algorithm with $\mathcal{O}(N^2)$ arithmetic operations. Moreover, the singular factor in a typical kernel function can be fully absorbed by the basis. With the aid of Fourier analysis, we can prove the convergence of the scheme. We demonstrate that the recursive computation of the entries of the stiffness matrix can be extended to the two-dimensional nonlocal Laplacian using the isotropic Hermite functions as basis functions. We provide ample numerical results to illustrate the accuracy and efficiency of the proposed algorithms.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2022-0007s}, url = {http://global-sci.org/intro/article_detail/nmtma/21088.html} }In this paper, we develop an efficient Hermite spectral-Galerkin method for nonlocal diffusion equations in unbounded domains. We show that the use of the Hermite basis can de-convolute the troublesome convolutional operations involved in the nonlocal Laplacian. As a result, the “stiffness” matrix can be fast computed and assembled via the four-point stable recursive algorithm with $\mathcal{O}(N^2)$ arithmetic operations. Moreover, the singular factor in a typical kernel function can be fully absorbed by the basis. With the aid of Fourier analysis, we can prove the convergence of the scheme. We demonstrate that the recursive computation of the entries of the stiffness matrix can be extended to the two-dimensional nonlocal Laplacian using the isotropic Hermite functions as basis functions. We provide ample numerical results to illustrate the accuracy and efficiency of the proposed algorithms.