Numer. Math. Theor. Meth. Appl., 15 (2022), pp. 442-463.
Published online: 2022-03
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a novel PDE-based model for the multi-phase segmentation problem by using a complex version of Cahn-Hilliard equations. Specifically, we modify the original complex system of Cahn-Hilliard equations by adding the mean curvature term and the fitting term to the evolution of its real part, which helps to render a piecewisely constant function at the steady state. By applying the K-means method to this function, one could achieve the desired multiphase segmentation. To solve the proposed system of equations, a semi-implicit finite difference scheme is employed. Numerical experiments are presented to demonstrate the feasibility of the proposed model and compare our model with other related ones.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2021-0099}, url = {http://global-sci.org/intro/article_detail/nmtma/20359.html} }In this paper, we propose a novel PDE-based model for the multi-phase segmentation problem by using a complex version of Cahn-Hilliard equations. Specifically, we modify the original complex system of Cahn-Hilliard equations by adding the mean curvature term and the fitting term to the evolution of its real part, which helps to render a piecewisely constant function at the steady state. By applying the K-means method to this function, one could achieve the desired multiphase segmentation. To solve the proposed system of equations, a semi-implicit finite difference scheme is employed. Numerical experiments are presented to demonstrate the feasibility of the proposed model and compare our model with other related ones.