- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 14 (2021), pp. 1017-1041.
Published online: 2021-09
Cited by
- BibTex
- RIS
- TXT
We concern with fast domain decomposition methods for solving the total variation minimization problems in image processing. By decomposing the image domain into non-overlapping subdomains and interfaces, we consider the primal-dual problem on the interfaces such that the subdomain problems become independent problems and can be solved in parallel. Suppose both the interfaces and subdomain problems are uniformly convex, we can apply the acceleration method to achieve an $\mathcal{O}(1 / n^2)$ convergent domain decomposition algorithm. The convergence analysis is provided as well. Numerical results on image denoising, inpainting, deblurring, and segmentation are provided and comparison results with existing methods are discussed, which not only demonstrate the advantages of our method but also support the theoretical convergence rate.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2020-0146 }, url = {http://global-sci.org/intro/article_detail/nmtma/19528.html} }We concern with fast domain decomposition methods for solving the total variation minimization problems in image processing. By decomposing the image domain into non-overlapping subdomains and interfaces, we consider the primal-dual problem on the interfaces such that the subdomain problems become independent problems and can be solved in parallel. Suppose both the interfaces and subdomain problems are uniformly convex, we can apply the acceleration method to achieve an $\mathcal{O}(1 / n^2)$ convergent domain decomposition algorithm. The convergence analysis is provided as well. Numerical results on image denoising, inpainting, deblurring, and segmentation are provided and comparison results with existing methods are discussed, which not only demonstrate the advantages of our method but also support the theoretical convergence rate.