Numer. Math. Theor. Meth. Appl., 14 (2021), pp. 540-558.
Published online: 2021-01
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a mathematical model and present numerical simulations for ice melting phenomena. The model is based on the phase-field modeling for the crystal growth. To model ice melting, we ignore anisotropy in the crystal growth model and introduce a new melting term. The numerical solution algorithm is a hybrid method which uses both the analytic and numerical solutions. We perform various computational experiments. The computational results confirm the accuracy and efficiency of the proposed method for ice melting.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2020-0023}, url = {http://global-sci.org/intro/article_detail/nmtma/18611.html} }In this paper, we propose a mathematical model and present numerical simulations for ice melting phenomena. The model is based on the phase-field modeling for the crystal growth. To model ice melting, we ignore anisotropy in the crystal growth model and introduce a new melting term. The numerical solution algorithm is a hybrid method which uses both the analytic and numerical solutions. We perform various computational experiments. The computational results confirm the accuracy and efficiency of the proposed method for ice melting.