- Journal Home
- Volume 18 - 2025
- Volume 17 - 2024
- Volume 16 - 2023
- Volume 15 - 2022
- Volume 14 - 2021
- Volume 13 - 2020
- Volume 12 - 2019
- Volume 11 - 2018
- Volume 10 - 2017
- Volume 9 - 2016
- Volume 8 - 2015
- Volume 7 - 2014
- Volume 6 - 2013
- Volume 5 - 2012
- Volume 4 - 2011
- Volume 3 - 2010
- Volume 2 - 2009
- Volume 1 - 2008
Numer. Math. Theor. Meth. Appl., 14 (2021), pp. 508-526.
Published online: 2021-01
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose and numerically investigate a superconvergent cluster recovery (SCR) method for the Crouzeix-Raviart (CR) element. The proposed recovery method reconstructs a $C^0$ linear gradient. A linear polynomial approximation is obtained by a least square fitting to the CR element approximation at certain sample points, and then taken derivatives to obtain the recovered gradient. The SCR recovery operator is superconvergent on uniform mesh of four patterns. Numerical examples show that SCR can produce a superconvergent gradient approximation for the CR element, and provide an asymptotically exact error estimator in the adaptive CR finite element method.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2020-0117}, url = {http://global-sci.org/intro/article_detail/nmtma/18609.html} }In this paper, we propose and numerically investigate a superconvergent cluster recovery (SCR) method for the Crouzeix-Raviart (CR) element. The proposed recovery method reconstructs a $C^0$ linear gradient. A linear polynomial approximation is obtained by a least square fitting to the CR element approximation at certain sample points, and then taken derivatives to obtain the recovered gradient. The SCR recovery operator is superconvergent on uniform mesh of four patterns. Numerical examples show that SCR can produce a superconvergent gradient approximation for the CR element, and provide an asymptotically exact error estimator in the adaptive CR finite element method.